If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-48x-192=0
a = 6; b = -48; c = -192;
Δ = b2-4ac
Δ = -482-4·6·(-192)
Δ = 6912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6912}=\sqrt{2304*3}=\sqrt{2304}*\sqrt{3}=48\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-48\sqrt{3}}{2*6}=\frac{48-48\sqrt{3}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+48\sqrt{3}}{2*6}=\frac{48+48\sqrt{3}}{12} $
| 23(6x⎯9)=2(x⎯4) | | m/5-4=21 | | X+14+12=x+12 | | X+65+163=x+102 | | 75x+22=86x | | 3(6-x)=20 | | 3-(x-3)=3x-3 | | 5x-3+9x+12=135 | | 6x+21=7x+4 | | -10x-10=-10-10 | | 3x^2-13=63 | | 2x-7+10=x-7 | | -3+9x=95 | | 1/2x=0.004 | | 2x-5+2x+1=8 | | 6(x-7)+12=6x-30 | | 2x+5x+4x=180 | | -5(2x-9)=2(x-4)-19 | | 3x=81* | | 3.6n=270 | | 1/2(x-8)=23+5x | | 19+2x=4(-x+9)-65 | | (13x+15)+(9x+5)=180 | | 5(8x+8-2x)=-10 | | 4x+5(3x-16)=15 | | 15x=12(x−3) | | 4.2m=84 | | 4,2m=84 | | 1/x=(1/5)+(3/2x) | | 0=-4.9x^2+6x+0.6 | | -4(v+4)=-2v-26 | | -2x-36=2(x+2) |